In recent years, interest-rate modeling has developed rapidly in terms of both practice and theory. The academic and practitioners’ communities, however, have not always communicated as productively as would have been desirable. As a result, their research programs have often developed with little constructive interference. In this book, Riccardo Rebonato draws on his academic and professional experience, straddling both sides of the divide to bring together and build on what theory and trading have to offer. Rebonato begins by presenting the conceptual foundations for the application of the LIBOR market model to the pricing of interest-rate derivatives. Next he treats in great detail the calibration of this model to market prices, asking how possible and advisable it is to enforce a simultaneous fitting to several market observables. He does so with an eye not only to mathematical feasibility but also to financial justification, while devoting special scrutiny to the implications of market incompleteness. Much of the book concerns an original extension of the LIBOR market model, devised to account for implied volatility smiles. This is done by introducing a stochastic-volatility, displaced-diffusion version of the model. The emphasis again is on the financial justification and on the computational feasibility of the proposed solution to the smile problem. This book is must reading for quantitative researchers in financial houses, sophisticated practitioners in the derivatives area, and students of finance. This book provides an overview of the models that can be used for valuing and managing interest rate derivatives. Split into two parts, the first discusses and compares the traditional models, such as spot- and forward-rate models, while the second concentrates on the more recently developed Market models. Unlike most of his competitors, the author's focus is not only on the mathematics: Antoon Pelsser draws on his experience in industry to explore a host of practical issues. Designed for Master's students, this practical text strikes the right balance between mathematical rigour and real-world application. Interest rate modeling and the pricing of related derivatives remain subjects of increasing importance in financial mathematics and risk management. This book provides an accessible introduction to these topics by a step-by-step presentation of concepts with a focus on explicit calculations. Each chapter is accompanied with exercises and their complete solutions, making the book suitable for advanced undergraduate and graduate level students. This second edition retains the main features of the first edition while incorporating a complete revision of the text as well as additional exercises with their solutions, and a new introductory chapter on credit risk. The stochastic interest rate
models considered range from standard short rate to forward rate models, with a treatment of the pricing of related derivatives such as caps and swaptions under forward measures. Some more advanced topics including the BGM model and an approach to its calibration are also covered. The definitive guide to fixed income valuation and risk analysis, The Trilogy in Fixed Income Valuation and Risk Analysis, comprehensively covers the most definitive work on interest rate risk, term structure analysis, and credit risk. The first book on interest rate risk modeling examines virtually every well-known IRR model used for pricing and risk analysis of various fixed income securities and their derivatives. The companion CD-ROM contains numerous formulas and programming tools that allow readers to better model risk and value fixed income securities. This comprehensive resource provides readers with the hands-on information and software needed to succeed in this financial arena. The 2nd edition of this successful book has several new features. The calibration discussion of the basic LIBOR market model has been enriched considerably, with an analysis of the impact of the swaptions interpolation technique and of the exogenous instantaneous correlation on the calibration outputs. A discussion of historical estimation of the instantaneous correlation matrix and of rank reduction has been added, and a LIBOR-model consistent swaption-volatility interpolation technique has been introduced. The old sections devoted to the smile issue in the LIBOR market model have been enlarged into a new chapter. New sections on local-volatility dynamics, and on stochastic volatility models have been added, with a thorough treatment of the recently developed uncertain-volatility approach. Examples of calibrations to real market data are now considered. The fast-growing interest for hybrid products has led to a new chapter. A special focus here is devoted to the pricing of inflation-linked derivatives. The three final new chapters of this second edition are devoted to credit. Since Credit Derivatives are increasingly fundamental, and since in the reduced-form modeling framework much of the technique involved is analogous to interest-rate modeling, Credit Derivatives -- mostly Credit Default Swaps (CDS), CDS Options and Constant Maturity CDS -- are discussed, building on the basic short rate-models and market models introduced earlier for the default-free market. Counterparty risk in interest rate payoff valuation is also considered, motivated by the recent Basel II framework developments. An innovative textbook for use in advanced undergraduate and graduate courses; accessible to students in financial mathematics, financial engineering and economics. Introduction to the Economics and Mathematics of Financial Markets fills the longstanding need for an accessible yet serious textbook treatment of financial economics. The book provides a rigorous overview of the subject, while its flexible presentation makes it suitable for use with different levels of undergraduate and graduate students. Each chapter presents mathematical models of financial problems at three different degrees of sophistication: single-period, multi-period, and continuous-time. The single-period and multi-period models require only basic calculus and an introductory probability/statistics course, while an advanced undergraduate course in probability is helpful in understanding the continuous-time models. In this way, the material is given complete coverage at different levels; the less advanced student can stop before the more sophisticated mathematics and still be able to grasp the general principles of financial economics. The book is divided into three parts. The first part provides an introduction to basic securities and financial market organization, the concept of interest rates, the main mathematical models, and quantitative ways to measure risks and rewards. The second part treats option pricing and hedging; here and throughout the book, the authors emphasize the Martingale or probabilistic approach. Finally, the third part examines equilibrium models—a subject often neglected by other texts in financial mathematics, but included here because of the qualitative insight it offers into the behavior of market participants and pricing. This book is aimed at experienced practitioners in the corporate bond markets and is a specialised text for investors and traders. The author relates from both personal experience as well as his own research to bring together subjects of practical importance to bond market practitioners. He introduces the latest techniques used for analysis and interpretation, including: Relative value trading Approaches to trading and hedging Dynamic analysis of spot and forward rates Interest rate modelling Fitting the yield curve Analysing the long bond yield Index-linked bond analytics Corporate bond defaults * Aspects of advanced analysis for experienced bond market practitioners * Complex topics described in an
accessible style * Brings together a wide range of topics in one volumeA step-by-step explanation of the mathematical models used to price derivatives. For this second edition, Salih Neftci has expanded one chapter, added six new ones, and inserted chapter-concluding exercises. He does not assume that the reader has a thorough mathematical background. His explanations of financial calculus seek to be simple and perceptive.Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.Understand and interpret the global debt capital markets Now in a completely updated and expanded edition, this is a technical guide to the yield curve, a key indicator of the global capital markets and the understanding and accurate prediction of which is critical to all market participants. Being able to accurately and timely predict the shape and direction of the curve permits practitioners to consistently outperform the market. Analysing and Interpreting the Yield Curve, 2nd Edition describes what the yield curve is, explains what it tells participants, outlines the significance of certain shapes that the curve assumes and, most importantly, demonstrates what factors drive it and how it is modelled and used. Covers the FTP curve, the multi-currency curve, CSA, OIS-Libor and 3-curve models Gets you up to speed on the secured curve Describes application of theoretical versus market curve relative value trading Explains the concept of the risk-free rate Accessible demonstration of curve interpolation best-practice using cubic spline, Nelson-Siegel and Svensson 94 models This advanced text is essential reading for traders, asset managers, bankers and financial analysts, as well as graduate students in banking and finance.Filling a gap in the literature caused by the recent financial crisis, this book provides a treatment of the techniques needed to model and evaluate interest rate derivatives according to the new paradigm for fixed income markets. Concerning this new development, there presently exist only research articles and two books, one of them an edited volume, both being written by researchers working mainly in practice. The aim of this book is to concentrate primarily on the methodological side, thereby providing an overview of the state-of-the-art and also clarifying the link between the new models and the classical literature. The book is intended to serve as a guide for graduate students and researchers as well as practitioners interested in the paradigm change for fixed income markets. A basic knowledge of fixed income markets and related stochastic methodology is assumed as a prerequisite.Interest rate modeling and the pricing of related derivatives remain subjects of increasing importance in financial mathematics and risk management. This book provides an accessible introduction to these topics by a step-by-step presentation of concepts with a focus on explicit calculations. Each chapter is accompanied with exercises and their complete solutions, making the book suitable for advanced undergraduate and graduate level students. This second edition retains the main features of the first edition while incorporating a complete revision of the text as well as additional exercises with their solutions, and a new introductory chapter on credit risk. The stochastic interest rate models considered range from standard short rate to forward rate models, with a treatment of the pricing of related derivatives such as caps and swaptions under forward measures. Some more advanced topics including the BGM model and an approach to its calibration are also covered.Containing many results that are new or exist only in recent research articles, Interest Rate Modeling: Theory and Practice portrays the theory of interest rate modeling as a three-dimensional object of finance, mathematics, and computation. It introduces all models with financial-economical justifications, develops options along the martingale approach, and handles option evaluations with precise numerical methods. The text begins with the mathematical foundations, including Ito’s calculus and the martingale representation theorem. It then introduces bonds and bond yields, followed by the Heath–Jarrow–Morton (HJM) model, which is the framework for no-arbitrage pricing models. The next chapter focuses on when the HJM model implies a Markovian short-rate model and discusses the construction and calibration of short-rate lattice models. In the chapter on the LIBOR market model, the author presents the simplest yet most robust formula for swaption pricing in the literature. He goes on to address model calibration, an important aspect of model applications in the markets; industrial issues; and the class of affine term structure models for interest rates. Taking a top-down approach, Interest Rate Modeling provides readers with a clear picture of this important subject by not overwhelming them
with too many specific models. The text captures the interdisciplinary nature of the field and shows readers what it takes to be a competent quant in today’s market. This book can be adopted for instructional use. For this purpose, a solutions manual is available for qualifying instructors. Interest rate modeling and the pricing of related derivatives remain subjects of increasing importance in financial mathematics and risk management. This book provides an accessible introduction to these topics by a step-by-step presentation of concepts with a focus on explicit calculations. Each chapter is accompanied with exercises and their complete solutions, making the book suitable for advanced undergraduate and graduate level students. This second edition retains the main features of the first edition while incorporating a complete revision of the text as well as additional exercises with their solutions, and a new introductory chapter on credit risk. The stochastic interest rate models considered range from standard short rate to forward rate models, with a treatment of the pricing of related derivatives such as caps and swaptions under forward measures. Some more advanced topics including the BGM model and an approach to its calibration are also covered. This book is tightly focused on the pricing and hedging of fixed income securities and their derivatives. It is targeted at those who are interested in trading these instruments in an investment bank, but is also useful for those responsible for monitoring compliance of the traders such as regulators, back office staff, middle and senior lever managers. To broaden its appeal, this book lowers the barriers to learning by keeping math to a minimum and by illustrating concepts through detailed numerical examples using Excel workbooks/spreadsheets on a CD with the book. On the accompanying CD with the book, three interest rate models are illustrated: Ho and Lee, constant volatility and Black Derman and Toy, along with two evolutionary models, Vasicek and CIR and two credit risk models, Jarrow and Turnbull and Duffie and Singleton. These are implemented via spreadsheets on the CD. * Starts at an introductory level and then develops advanced topics * Provides plenty of numerical examples rather than mathematical equations to aid full understanding of the strengths and weaknesses of all interest rate derivative models * Can be used for self-study - a complete book on the topic, which includes examples with answersThe field of financial mathematics has developed tremendously over the past thirty years, and the underlying models that have taken shape in interest rate markets and bond markets, being much richer in structure than equity-derivative models, are particularly fascinating and complex. This book introduces the tools required for the arbitrage-free modelling of the dynamics of these markets. Andrew Cairns addresses not only seminal works but also modern developments. Refreshingly broad in scope, covering numerical methods, credit risk, and descriptive models, and with an approachable sequence of opening chapters, Interest Rate Models will make readers--be they graduate students, academics, or practitioners--confident enough to develop their own interest rate models or to price nonstandard derivatives using existing models. The mathematical chapters begin with the simple binomial model that introduces many core ideas. But the main chapters work their way systematically through all of the main developments in continuous-time interest rate modelling. The book describes fully the broad range of approaches to interest rate modelling: short-rate models, no-arbitrage models, the Heath-Jarrow-Morton framework, multifactor models, forward measures, positive-interest models, and market models. Later chapters cover some related topics, including numerical methods, credit risk, and model calibration. Significantly, the book develops the martingale approach to bond pricing in detail, concentrating on risk-neutral pricing, before later exploring recent advances in interest rate modelling where different pricing measures are important. Back Cover (this section should include endorsements also) As interest rate markets continue to innovate and expand it is becoming increasingly important to remain up-to-date with the latest practical and theoretical developments. This book covers the latest developments in full, with descriptions and implementation techniques for all the major classes of interest rate models - both those actively used in practice as well as theoretical models still 'waiting in the wings'. Interest rate models, implementation methods and estimation issues are discussed at length by the authors as are important new developments such as kernel estimation techniques, economic based models, implied pricing methods and models on manifolds. Providing balanced coverage of both the practical use of models and the theory that underlies them, Interest Rate Modelling adopts an implementation orientation throughout.
making it an ideal resource for both practitioners and researchers. Back Flap Jessica James is Head of Research for Bank One's Strategic Risk Management group, based in the UK. Jessica started life as a physicist at Manchester University and completed her D Phil in Theoretical Atomic and Nuclear Physics at Christ Church, Oxford, under Professor Sandars. After a year as a college lecturer at Trinity, Oxford, she began work at the First National Bank of Chicago, now Bank One, where she still works. She is well known as a speaker on the conference circuit, lecturing on a variety of topics such as VaR, capital allocation, credit derivatives and interest rate modelling, and has published articles on various aspects of financial modelling. Nick Webber is a lecturer in Finance at Warwick Business School. Prior to his academic career, Nick had extensive experience in the industrial and commercial world in operational research and computing. After obtaining a PhD in Theoretical Physics from Imperial College he began research into financial options. His main area of research centres on interest rate modelling and computational finance. He has taught practitioner and academic courses for many years, chiefly on options and interest rates. Front Flap Interest Rate Modelling provides a comprehensive resource on all the main aspects of valuing and hedging interest rate products. A series of introductory chapters reviews the theoretical background, pointing out the problems in using naïve valuation and implementation techniques. There follows a full analysis of interest rate models including major categories, such as Affine, HJM and Market models, and in addition, lesser well known types that include Consol, Random field and Jump-augmented Models. Implementation methods are discussed in depth including the latest developments in the use of finite difference, Lattice and Monte Carlo methods and their particular application to the valuation of interest rate derivatives. Containing previously unpublished material, Interest Rate Modelling is a key reference work both for practitioners developing and implementing models for real and for academics teaching and researching in the field. Changing interest rates constitute one of the major risk sources for banks, insurance companies, and other financial institutions. Modeling the term-structure movements of interest rates is a challenging task. This volume gives an introduction to the mathematics of term-structure models in continuous time. It includes practical aspects for fixed-income markets such as day-count conventions, duration of coupon-paying bonds and yield curve construction; arbitrage theory; short-rate models; the Heath-Jarrow-Morton methodology; consistent term-structure parametrizations; affine diffusion processes and option pricing with Fourier transform; LIBOR market models; and credit risk. The focus is on a mathematically straightforward but rigorous development of the theory. Students, researchers and practitioners will find this volume very useful. Each chapter ends with a set of exercises, that provides source for homework and exam questions. Readers are expected to be familiar with elementary Itô calculus, basic probability theory, and real and complex analysis. The definitive guide to fixed income valuation and risk analysis The Trilogy in Fixed Income Valuation and Risk Analysis comprehensively covers the most definitive work on interest rate risk, term structure analysis, and credit risk. The first book on interest rate risk modeling examines virtually every well-known IRR model used for pricing and risk analysis of various fixed income securities and their derivatives. The companion CD-ROM contain numerous formulas and programming tools that allow readers to better model risk and value fixed income securities. This comprehensive resource provides readers with the hands-on information and software needed to succeed in this financial arena. An Introduction to Interest rate models. "The three volumes of Interest rate modeling are aimed primarily at practitioners working in the area of interest rate derivatives, but much of the material is quite general and, we believe, will also hold significant appeal to researchers working in other asset classes. Students and academics interested in financial engineering and applied work will find the material particularly useful for its description of real-life model usage and for its expansive discussion of model calibration, approximation theory, and numerical methods."--Preface. The class of interest rate models introduced by O. Cheyette in 1994 is a subclass of the general HJM framework with a time dependent volatility parameterization. This book addresses the above mentioned class of interest rate models and concentrates on the calibration, valuation and sensitivity analysis in multifactor models. It derives analytical pricing formulas for bonds and caplets and applies several numerical valuation techniques in the class of Cheyette model, i.e. Monte Carlo simulation, characteristic functions and PDE
valuation based on sparse grids. Finally it focuses on the sensitivity analysis of Cheyette models and derives Model- and Market Greeks. To the best of our knowledge, this sensitivity analysis of interest rate derivatives in the class of Cheyette models is unique in the literature. Up to now the valuation of interest rate derivatives using PDEs has been restricted to 3 dimensions only, since the computational effort was too great. The author picks up the sparse grid technique, adjusts it slightly and can solve high-dimensional PDEs (four dimensions plus time) accurately in reasonable time. Many topics investigated in this book are new areas of research and make a significant contribution to the scientific community of financial engineers. They also represent a valuable development for practitioners. Modeling the Term Structure of Interest Rates provides a comprehensive review of the continuous-time modeling techniques of the term structure applicable to value and hedge default-free bonds and other interest rate derivatives. Growth in the derivatives market has brought with it a greater volume and range of interest rate dependent products. These products have become increasingly innovative and complex to price, requiring sophisticated market models that capture the full dynamics of the yield curve. A study of the evolution of interest rate modeling theory places these models in the correct mathematical context, allowing appreciation of their key assumptions, concepts and implications. The book guides the practitioner through the derivation and implementation of a variety of models that account for the characteristics and irregularities of observed term structures. This book presents a short introduction to continuous-time financial models. An overview of the basics of stochastic analysis precedes a focus on the Black–Scholes and interest rate models. Other topics covered include self-financing strategies, option pricing, exotic options and risk-neutral probabilities. Vasicek, Cox-Ingersoll-Ross, and Heath-Jarrow-Morton interest rate models are also explored. The author presents practitioners with a basic introduction, with more rigorous information provided for mathematicians. The reader is assumed to be familiar with the basics of probability theory. Some basic knowledge of stochastic integration and differential equations theory is preferable, although all preliminary information is given in the first part of the book. Some relatively simple theoretical exercises are also provided. About continuous-time stochastic models of financial mathematics Black–Scholes model and interest rate models Requiring a minimum knowledge of stochastic integration and stochastic differential equations Modeling Fixed Income Securities and Interest Rate Options, Third Edition presents the basics of fixed-income securities in a way that, unlike competitive texts, requires a minimum of prerequisites. While other books focus heavily on institutional details of the bond market, all of which could easily be learned "on the job," the third edition of this classic textbook is more focused on presenting a coherent theoretical framework for understanding all basic models. The author’s unified approach—the Heath Jarrow Morton model—under which all other models are presented as special cases, enhances understanding of the material. The author’s pricing model is widely used in today’s securities industry. This new edition offers many updates to align with advances in the research and requires a minimum of prerequisites while presenting the basics of fixed-income securities. Highlights of the Third Edition Chapters 1-16 completely updated to align with advances in research Thoroughly eliminates out-of-date material while advancing the presentation Includes an ample amount of exercises and examples throughout the text which illustrate key concepts. Bond markets differ in one fundamental aspect from standard stock markets. While the latter are built up to a finite number of trade assets, the underlying basis of a bond market is the entire term structure of interest rates: an infinite-dimensional variable which is not directly observable. On the empirical side, this necessitates curve-fitting methods for the daily estimation of the term structure. Pricing models, on the other hand, are usually built upon stochastic factors representing the term structure in a finite-dimensional state space. Written for readers with knowledge in mathematical finance (in particular interest rate theory) and elementary stochastic analysis, this research monograph has threefold aims: to bring together estimation methods and factor models for interest rates, to provide appropriate consistency conditions and to explore some important examples. This well-organised, comprehensive reference and textbook describes rate models developed from fundamental kinetic theory and presents models using consistent terminology and notation. Major topics include rate equations, reactor theory, transition state theory, surface reactivity, advective and diffusive transport,
aggregation kinetics, nucleation kinetics, and solid-solid transformation rates. The theoretical basis and mathematical derivation of each model is presented in detail and illustrated with worked examples from real-world applications to geochemical problems. The book is also supported by online resources: self-study problems put students' new learning into practice, and spreadsheets provide the full data used in figures and examples, enabling students to manipulate the data for themselves. This is an ideal overview for graduate students, providing a solid understanding of geochemical kinetics. It will also provide researchers and professional geochemists with a valuable reference for solving practical and scientific problems.

Following the financial crisis dramatic market changes, a new standard in interest rate modelling emerged, called the multi-curve framework. The author provides a detailed analysis of the framework, through its foundations, evolution and implementation. The book also covers recent extensions to collateral and stochastic spreads modelling. The rewards and dangers of speculating in the modern financial markets have come to the fore in recent times with the collapse of banks and bankruptcies of public corporations as a direct result of ill-judged investment. At the same time, individuals are paid huge sums to use their mathematical skills to make well-judged investment decisions. Here now is the first rigorous and accessible account of the mathematics behind the pricing, construction and hedging of derivative securities. Key concepts such as martingales, change of measure, and the Heath-Jarrow-Morton model are described with mathematical precision in a style tailored for market practitioners. Starting from discrete-time hedging on binary trees, continuous-time stock models (including Black-Scholes) are developed. Practicalities are stressed, including examples from stock, currency and interest rate markets, all accompanied by graphical illustrations with realistic data. A full glossary of probabilistic and financial terms is provided. This unique book will be an essential purchase for market practitioners, quantitative analysts, and derivatives traders.

This book introduces the mathematics of stochastic interest rate modeling and the pricing of related derivatives, based on a step-by-step presentation of concepts with a focus on explicit calculations. The types of interest rates considered range from short rates to forward rates such as LIBOR and swap rates, which are presented in the HJM and BGM frameworks. The pricing and hedging of interest rate and fixed income derivatives such as bond options, caps, and swaptions, are treated using forward measure techniques. An introduction to default bond pricing and an outlook on model calibration are also included as additional topics.

This third edition represents a significant update on the second edition published by World Scientific in 2012. Most chapters have been reorganized and largely rewritten with additional details and supplementary solved exercises. New graphs and simulations based on market data have been included, together with the corresponding R codes. This new edition also contains 75 exercises and 4 problems with detailed solutions, making it suitable for advanced undergraduate and graduate level students.

Containing many results that are new, or which exist only in recent research articles, Interest Rate Modeling: Theory and Practice, 2nd Edition portrays the theory of interest rate modeling as a three-dimensional object of finance, mathematics, and computation. It introduces all models with financial-economical justifications, develops options along the martingale approach, and handles option evaluations with precise numerical methods. Features:

- Presents a complete cycle of model construction and applications, showing readers how to build and use models
- Provides a systematic treatment of intriguing industrial issues, such as volatility and correlation adjustments
- Contains exercise sets and a number of examples, with many based on real market data
- Includes comments on cutting-edge research, such as volatility-smile, positive interest-rate models, and convexity adjustment
- New to the 2nd edition: volatility smile modeling; a new paradigm for inflation derivatives modeling; an extended market model for credit derivatives; a dual-curved model for the post-crisis interest-rate derivatives markets; and an elegant framework for the xVA.

In Introduction to Mortgages & Mortgage Backed Securities, author Richard Green combines current practices in real estate capital markets with financial theory so readers can make intelligent business decisions. After a behavioral economics chapter on the nature of real estate decisions, he explores mortgage products, processes, derivatives, and international practices. By focusing on debt, his book presents a different view of the mortgage market than is commonly available, and his primer on fixed-income tools and concepts ensures that readers understand the rich content he
covers. Including commercial and residential real estate, this book explains how the markets work, why they collapsed in 2008, and what countries are doing to protect themselves from future bubbles. Green's expertise illuminates both the fundamentals of mortgage analysis and the international paradigms of products, models, and regulatory environments. Written for buyers of real estate, not mortgage lenders.

Balances theory with increasingly complex practices of commercial and residential mortgage lending. Emphasizes international practices, changes caused by the 2008-11 financial crisis, and the behavioral aspects of mortgage decision making.

After the first edition of this book was published in early 2005, the world has changed dramatically and at a pace never seen before. The changes that occurred in 2008 and 2009 were completely unthinkable two years before. These changes took place not only in the Finance sector, the origin of the crisis, but also, as a result, in other economic sectors like the automotive sector. Governments now own substantial parts, if not majorities, in banks or other companies which recorded losses of double digit billions of USD in 2008. 2008 saw the collapse of leading stand-alone U. S. investment banks. In many countries interest rates fell close to zero. What has happened? While the economy showed strong growth in 2004 to 2006, the Subprime or Credit Crisis changed the picture completely. What started in the U. S. housing market in late 2006 became a full-sized global financial crisis and has affected financial markets around the world. A decline in U. S. house prices and increasing interest rates caused a higher rate of subprime mortgage delinquencies in the U. S. and, due to the wide distribution of securitized assets, had a negative effect on other markets. As a result, markets realized that risks had been underestimated and volatility increased. This development culminated in the bankruptcy of the investment bank Lehman Brothers in mid September 2008.

"Overall this book provides an excellent summary of the state of knowledge of term structure modelling. It combines a solid academic background with the practical experience of someone who works in the financial sector." Alan White and John Hull, A-J Financial Systems, Canada

The modelling of exotic interest-rate options is such an important and fast-moving area, that the updating of the extremely successful first edition has been eagerly awaited. This edition re-focuses the assessment of various models presented in the first edition, in light of the new developments of modelling imperfect correlation between financial quantities. It also presents a substantial new chapter devoted to this revolutionary modelling method. In this second edition, readers will also find important new data dealing with the securities markets and the probabilistic/stochastic calculus tools. Other changes include: a new chapter on the issues arising in the pricing of several classes of exotic interest-rate instruments; and insights from the BDT and the Brennan and Schwartz approaches which can be combined into a new class of "generalised models". Further details can be found on the links between mean-reversion and calibration for important classes of models. A large number of securities related to various interest rates are traded in financial markets. Traders and analysts in the financial industry apply models based on economics, mathematics and probability theory to compute reasonable prices and risk measures for these securities. This book offers a unified presentation of such models and securities. This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. 

From the reviews: "A wonderful book. The authors present some cutting-edge math."

--WWW.RISKBOOK.COM

Bond markets differ in one fundamental aspect from standard stock markets. While the latter are built up to a finite number of trade assets, the underlying basis of a bond market is the entire term structure of interest rates: an infinite-dimensional variable which is not directly observable. On the empirical side, this necessitates curve-fitting methods for the daily estimation of the term structure. Pricing models, on the other hand, are usually built upon stochastic factors representing the term structure in a finite-dimensional state space. Written for readers with knowledge in mathematical finance (in particular interest rate theory) and elementary stochastic analysis, this research monograph has threefold aims: to bring together estimation methods and factor models for interest rates, to provide appropriate consistency conditions and to explore some important examples.